Lacunary ideal convergence of multiple sequences
نویسندگان
چکیده
منابع مشابه
On Ideal Version of Lacunary Statistical Convergence of Double Sequences
For any double lacunary sequence θrs = {(kr, ls)} and an admissible ideal I2 ⊆ P(N×N), the aim of present work is to define the concepts of Nθrs(I2)− and Sθrs(I2)−convergence for double sequence of numbers. We also present some inclusion relations between these notions and prove that Sθrs(I2)∩`∞ and S2(I2)∩ `∞ are closed subsets of `∞, the space of all bounded double sequences of numbers.
متن کاملLacunary Ideal Convergence in Probabilistic Normed Space
Abstract. The aim of this paper is to study the notion of lacunary I-convergence in probabilistic normed spaces as a variant of the notion of ideal convergence. Also lacunary I-limit points and lacunary I-cluster points have been defined and the relation between them has been established. Furthermore, lacunary Cauchy and lacunary I-Cauchy sequences are introduced and studied. Finally, we provid...
متن کاملLacunary Statistical Convergence of Difference Double Sequences
In this paper our purpose is to extend some results known in the literature for ordinary difference (single) to difference double sequences of real numbers.Quite recently, Esi [1] defined the statistical analogue for double difference sequences x = (xk,l) as follows: A real double sequence x = (xk,l) is said to be P-statistically ∆− convergent to L provided that for each ε > 0 P − lim m,n 1 mn ...
متن کاملOn fuzzy real valued asymptotically equivalent sequences and lacunary ideal convergence
In this paper we present some definitions which are the natural combination of the definition of asymptotic equivalence, statistical convergence, lacunary statistical convergence of fuzzy real numbers and ideal. In addition, we also present asymptotically ideal equivalent sequences of fuzzy real numbers and establish some relations related to this concept. Finally we introduce the notion of Ces...
متن کاملIdeal convergence of bounded sequences
We generalize the Bolzano-Weierstrass theorem (that every bounded sequence of reals admits a convergent subsequence) on ideal convergence. We show examples of ideals with and without the Bolzano-Weierstrass property, and give characterizations of BW property in terms of submeasures and extendability to a maximal P-ideal. We show applications to Rudin-Keisler and Rudin-Blass orderings of ideals ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Egyptian Mathematical Society
سال: 2016
ISSN: 1110-256X
DOI: 10.1016/j.joems.2014.07.002